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It has been observed in experiments that significant levels of sound may be produced
when a curved flame propagates downwards along a tube in a gravity field. In
this paper, we present a mathematical description of this acoustic amplification
process, which represents a simple form of combustion instability. First, based on the
large-activation-energy and small-Mach-number assumptions, a general asymptotic
formulation is derived, in which the nature of flame–sound coupling is brought out
explicitly. This framework is then employed to study the weakly nonlinear coupling
between a Darrieus–Landau (D-L) instability mode of the flame and an acoustic mode
of the tube, which is the main mechanism for sound generation in the experiments.
In order to provide a somewhat unified description, the linear coupling via the direct
pressure effect has also been included in our analysis. A set of coupled equations
which govern the evolution of the acoustic and D-L modes was derived. The solutions
show that the nonlinear coupling leads to very rapid amplification of sound. After
reaching an appreciable level, the sound inhibits the flame, causing the latter to
flatten. The sound then saturates at an almost constant level, or continues to grow at
a smaller rate owing to the pressure effect. The above theoretical predictions are in
good qualitative agreement with experiments. The present study also considered the
influence of weak vortical disturbances in the oncoming flow. It is shown that certain
components in these perturbations may form resonant triads with the acoustic and
D-L modes, thereby providing an additional coupling mechanism.

1. Introduction
Combustion instability generally refers to the sustained pressure fluctuations of an

acoustic nature in a chamber where unsteady combustion takes place. Because of
its adverse effect on the structure and performance of the combustion, it has been a
subject of extensive research.

Combustion instability is essentially a self-excited oscillation, involving a complex
interplay among unsteady heat release, the acoustic fluctuation and the vorticity field.
Unsteady heat release generates sound. The latter can produce a back effect on the
heat release through a number of mechanisms. In a combustor containing a shear
flow, which is typical of practical combustor configurations, sound may generate
(Kelvin–Helmholtz) instability waves at the inlet (via a receptivity mechanism as
it is usually referred to in laminar–turbulent transition). These waves then amplify,
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causing the shear layer to roll up and break down into small-scale motions, which
affects heat release, thereby forming a closed feedback loop (e.g. Poinsot et al. 1987;
Yu, Trouve & Daily 1991; Schadow & Gutmark 1992). Sound may modulate the inlet
feeding rate of the fuel, causing equivalence ratio oscillations (e.g. Lieuwen & Zinn
1998). Sound may affect heat release by modulating the surface area of the flame,
and by modifying burning rate directly. These last two mechanisms operate in simple
combustor geometry such as a tube or duct, and will be the focus of the present
study. In practical situations, several mechanisms may be operating simultaneously.

An important insight into the effect of unsteady heat release on sound amplification
is provided by the Rayleigh criterion, which states that an acoustic wave will amplify
if its pressure and the heat release are ‘in phase’, i.e. the integral of the product of the
pressure and the unsteady heat release over a cycle is positive. The difficulty in applying
this criterion is that unsteady heat release is often part of the solution and thus not
known a priori. A usual remedy is to extrapolate, by using available experimental
data, some empirical relations between the heat release and sound fluctuation. This
then leads to a thermo-acoustic problem. Such an approach has been employed by
Bloxsidge, Dowling & Langhorne (1988) to describe ‘reheat buzz’ (Langhorne 1988).
In their work, the unsteady heat release was taken to be proportional to flow velocity
at the flame front with a suitable time delay. This linear relation was subsequently
extended by Dowling (1997) to include nonlinear effects in order to describe the
self-excited oscillations in the system. A somewhat different model, which relates the
heat release to the flame surface area, was proposed by Fleifil et al. (1996) and was
further extended by Dowling (1999) and Ducruix, Durox & Candel (2000). Ducruix
et al. also conducted an experimental study to check the validity of the model, and
concluded that the model provides a reasonably accurate approximation for sound of
relatively low frequency. Dowling (1995) formulated the semi-empirical approach in a
more general setting, and discussed, inter alia, the effects of the mean Mach number
and heat distribution.

In the semi-empirical approach, the hydrodynamic (and chemical) processes of
combustion are completely by-passed. To understand the acoustic-flame coupling
from first principles, we have to look into the structure of the flame as well as its
associated hydrodynamic field. Fortunately, for premixed flames much knowledge
about the last two aspects above has been obtained by using the powerful asymptotic
approach based on the large-activation-energy assumption (Williams 1985). Clavin
(1985, 1994) gives detailed reviews of the subject. This framework, as well as relevant
previous results, will be used in our work. Detailed discussions will be presented in
§ 2.

A thorough theoretical treatment of sound–flame coupling is unrealistic at present
for a practical combustor, where the flow is strongly vortical and turbulent. As a
first step, it is necessary to restrict the present work to the simple case where the
hydrodynamic motion is primarily due to unsteady heat release and remains laminar.

A formal formulation of acoustic-flame coupling has been given by Harten, Kapila
& Matkowsky (1984) for what may be called the ‘high-frequency’ regime, where the
acoustic time scale is comparable to the transit time of the flame, O(d/UL), while
the hydrodynamics has a length scale of O(d); here, d and UL represent the flame
thickness and speed, respectively. The resulting system is nonlinear and requires a
major numerical attack. Harten et al. consider the flat-flame case in the low-frequency
and small-heat-release limits, and obtained in each limit the solution which describes
the effect of acoustic pressure on the flame. However, they did not consider how flame
influences the sound. This inverse process was investigated by Clavin, Pelce & He
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(1990), who also removed the assumption of small heat release. By closing the loop,
they were able to show that the mutual interaction leads to amplification of sound,
i.e. to acoustic instability. For a flat flame, the hydrodynamics is completely absent,
and the sole coupling is through the acoustic pressure affecting the temperature or
enthalpy.

For a curved flame, there exists an additional coupling mechanism. As was pointed
out by Markstein (1970), the sound pressure modulates the flame and hence alters
its surface area. This in turn leads to modulation of heat release, thereby affecting
the sound itself. This mechanism was further analysed by Pelce & Rochwerger (1992)
in connection with the experiments of Searby (1992), who observed that sound was
generated when a curved flame was propagating downwards in a tube. The curved
flame arises as a result of the well-known Darrieus–Landau (D-L) instability. In
developing a mathematical model, Pelce & Rochwerger represented the curved flame
by the neutrally stable D-L instability mode, (which exists due to the stabilizing effect
of gravity). A constant amplitude is prescribed in calculating the growth rate of the
sound. The latter was found to be proportional to the square of the amplitude of
the D-L mode. Their calculation further indicates that the maximum growth rate
is attained when the flame has reached the lower half of the tube. This coupling
mechanism could be stronger by an order of magnitude than that via pressure–
temperature considered by Clavin et al. (1990).

The general concern of the present paper is with the flame–acoustic coupling process
that leads to large-scale combustion instability in premixed flames. Previously, each
mechanism of flame–acoustic coupling was treated separately and some derivations
rely on ad hoc assumptions which are not mathematically justified. As such, the
relative role of different mechanisms is not entirely clear. In the present paper, we will
derive a general asymptotic theory starting from the fundamental equations governing
the chemically reacting flows. The general theory will allow us not only to unify the
known coupling processes, but also to identify a new one. A specific objective of
the present study is to improve the model of Pelce & Rochwerger (1992) in two
somewhat related aspects, both of which are important. First, we note that, like any
marginally stable mode, a neutral D-L mode must modulate in a weakly nonlinear
fashion rather than stay completely neutral. According to classical weakly nonlinear
theory (Stuart 1960), if the typical magnitude of the mode is ε, the time scale of
modulation is O(ε−2), which is comparable with the time scale over which the sound
amplifies. Secondly, Searby’s (1992) experiments showed that the flame was evolving,
and moreover that sound amplification takes place mainly as the flame evolves from
a curved pattern to a flat one. Therefore, for both mathematical and physical reasons,
it is necessary to take into account simultaneously the evolving nature of the flame
and the back reaction of sound on the flame, which were suppressed in the theory
of Pelce & Rochwerger (1992) in an ad hoc manner. In this paper, the nonlinear
coupling and evolution of the acoustic and flame instability modes will be studied in
a systematic fashion by using the general asymptotic formulation.

The rest of the paper is organized as follows. In § 2, the problem is formulated for
a premixed combustion in a two-dimensional duct. The relevant asymptotic scalings
are specified and the resulting asymptotic structures are highlighted. In § 3, a general
formulation is given for the sound–flame interaction in what may be regarded as the
‘low-frequency’ regime in the sense that the acoustic time scale is much longer than
the transit time of the flame. The analysis indicates that the coupling in general is
strongly nonlinear; the flame drives acoustic fluctuation by inducing a jump in the
longitudinal velocity, while the sound so produced modulates the flame. The analysis
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Figure 1. A sketch illustrating the problem and the asymptotic structure.

is extended to include the coupling mechanism due to the direct effect of pressure on
the burning velocity. In § 4, the analysis is specialized to the interaction between a D-L
instability mode and a longitudinal acoustic mode of the duct. With the particular
purpose to explain further the experiments of Searby (1992), we assume that the flame
is nearly neutral due to the stabilizing effect of gravity. A weakly nonlinear analysis
is performed to derive the amplitude equations that govern the coupling between the
flame and sound. The effect of vortical disturbances carried by the oncoming fresh
mixture is also analysed, and we show that certain components of disturbances may
form a resonant triad with the D-L and acoustic modes, thereby modifying the sound–
flame coupling. Relevant numerical solutions of the amplitude equations are presented
in § 5, and they indicate that the present theory captures some important features of
the experiments. In § 6, we summarize the main results and discuss briefly further work.

2. Formulation
Consider the combustion of a homogeneous premixed combustible mixture in a

duct of width h∗ (see figure 1). For simplicity, a one-step irreversible exothermic
chemical reaction is assumed. The gaseous mixture consists of a single deficient
reactant and an abundant component so that the progressive variable of the reaction
can be taken to be the mass fraction of the former, Y , and the physical properties
are determined by the latter. The mixture is assumed to obey the state equation for a
perfect gas.

The fresh mixture has a density ρ−∞ and temperature Θ−∞. Owing to steady heat
release, the mean temperature (density) behind the flame increases (decreases) to Θ∞
(ρ∞). An important non-dimensional parameter is

β = E(Θ∞ − Θ−∞)/RΘ2
∞, (2.1)

where E is the activation energy and R is the universal gas constant.
The flame propagates into the fresh mixture at a mean speed UL, and it has an

intrinsic thickness d = D∗
th/UL, where D∗

th is the thermal diffusivity. For later reference,
we define the ratio

δ = d/h∗,

and the Mach number

M = UL/a∗,

where a∗ = (γp−∞/ρ−∞)1/2 is the speed of sound.
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The formulation in this section follows closely that of Matalon & Matkowsky
(1982), subject to some minor modifications due to the inclusion of compressibility
and gravity force. Let (x, y, z) and t be space and time variables normalized by h∗

and h∗/UL, respectively. The velocity u ≡ (u, v, w), density ρ, and temperature θ are
normalized by UL, ρ−∞ and Θ−∞, respectively. The non-dimensional pressure p is
introduced by writing the dimensional pressure as (p−∞ + ρ−∞U 2

Lp).
On the assumptions that the shear viscosity is independent of temperature and bulk

viscosity is zero (Stokes hypothesis), the governing equations in the non-dimensional
form can be written as

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.2)

ρ

(
∂

∂t
+ u · ∇

)
u = −∇p + δPr∇2u + 1

3
δPr∇(∇ · u) − ρGi, (2.3)

ρ

(
∂

∂t
+ u · ∇

)
Y = δLe−1∇2Y − δΩ, (2.4)

ρ

(
∂

∂t
+ u · ∇

)
θ = δqΩ + (γ − 1)M2

(
∂

∂t
+ u · ∇

)
p + δ∇2θ + δ(γ − 1)M2Φ, (2.5)

1 + γM2p = ρθ, (2.6)

where Pr , Le and γ denote the Prandtl number, Lewis number and the ratio of
specific heats respectively, i is the unit vector along the duct and

G = gh∗/U 2
L

is the normalized gravity force. Φ is the dissipation function, which plays no part to
the required order of approximation in this study and will be ignored here in after.

The reaction rate Ω is taken to be described by the Arrhenius law:

Ω = Ω0δ
−2ρY exp

{
β

(
1

Θ+

− 1

θ

)}
, (2.7)

where Θ+ = 1 + q is the adiabatic flame temperature, and the factor Ω0 is chosen so
that the non-dimensional speed of a flat flame is unity.

The basic governing equations (2.2)–(2.6) have to be supplemented by appropriate
boundary conditions, which necessarily depend on the specific problem under
consideration. Correct prescription of these conditions is crucial and very often a
delicate matter itself.

Direct numerical simulation of combustion instability based on (2.2)–(2.6) is chal-
lenging owing to the disparity of the scales involved in the combustion process, which
includes the chemical reaction taking place on a scale smaller than the Kolmogrov
scale, and the acoustic fluctuation, whose wavelength is very long for a typical
low-Mach-number flow.

The very fact that causes numerical difficulty, i.e. the scale disparity, may be
exploited mathematically to derive a simplified system, which could provide useful
theoretical insights into the problem. A key simplifying assumption is that of large
activation energy, corresponding to β � 1. The chemical reaction then occurs in a thin
region of width O(d/β) centred at the flame front. The basic framework based on
this observation has been well developed, and is referred to as large-activation-energy
asymptotics.
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Assume that the flame front is given by x = f (y, z, t). It is convenient to introduce
a coordinate system attached to the front,

ξ = x − f (y, z, t), η = y, ζ = z,

and to split the velocity u as

u = ui + v.

Then the governing equations can be written as (Matalon & Matkowsky 1982)

∂ρ

∂t
+

∂ρs

∂ξ
+ ∇ · (ρv) = 0, (2.8)

ρ
∂u

∂t
+ ρs

∂u

∂ξ
+ ρv · ∇u = −∂p

∂ξ
+ δPr

{
�u +

1

3

∂

∂ξ

(
∂s

∂ξ
+ ∇ · v

)}
− ρG, (2.9)

ρ
∂v

∂t
+ ρs

∂v

∂ξ
+ ρv · ∇v = −∇p + ∇f

∂p

∂ξ
+ δPr

{
�v +

1

3

(
∇ − ∇f

∂

∂ξ

)(
∂s

∂ξ
+ ∇ · v

)}
,

(2.10)

ρ
∂Y

∂t
+ ρs

∂Y

∂ξ
+ ρv · ∇Y = δLe−1�Y − δΩ, (2.11)

ρ
∂θ

∂t
+ ρs

∂θ

∂ξ
+ ρv · ∇θ = δ�θ + δqΩ + (γ − 1)M2

(
∂p

∂t
+ s

∂p

∂ξ
+ v · ∇p

)
, (2.12)

where

s = u − ft − v · ∇f,

� = [1 + (∇f )2]
∂2

∂ξ 2
+ ∇2 − ∇2f

∂

∂ξ
− 2

∂

∂ξ
(∇f · ∇);

here the operators ∇ and ∇2 are defined with respect to η and ζ .
The large-activation-energy asymptotic approach requires the Lewis number Le to

be close to unity, or more precisely

Le = 1 + β−1l with l = O(1). (2.13)

To make analytical progress, we assume, in addition to β � 1, that

δ = d/h∗ � 1, M � 1. (2.14)

The whole flow field is then described by four distinct asymptotic regions, as illustrated
in figure 1. In addition to the thin reaction and pre-heated zones, there are also
hydrodynamic and acoustic regions, which scale on h∗ and λ∗ ≡ h∗/M , respectively.

In the reaction zone, the heat release due to the reaction balances the thermal
diffusion, and the species variation balances the mass diffusion (Matkowsky &
Sivashinsky 1979). In the pre-heated zone, the dominant balance is between the
advection and diffusion. All the four regions are fully interactive in the sense that the
final complete solution relies on the investigation of all these regions.

The direct interaction between the sound and flame is through the hydrodynamic
region, which we now consider. In this region, the solution expands as

(ρ, θ) = (R0, Θ) + δ(ρ1, θ1) + . . . ,

(u, v, f ) = (u0, v0, f0) + δ(u1, v1, f1) + . . . ,

p = −(R0Gξ ) + p0 + δp1 + . . . .

 (2.15)
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The solution for the mean density (Matalon & Matkowsky 1982; Pelce & Clavin
1982)

R0 =

{
1 ≡ R−, ξ < 0,

(1 + q)−1 ≡ R+, ξ > 0,

is accurate to all orders in δ. In the following, the subscript ‘0’ will be omitted.
Substitution of (2.15) into (2.8)–(2.10) leads to the equations governing (u0, v0, p0):

∂s0

∂ξ
+ ∇ · v0 = 0,

R

{
∂u0

∂t
+ s0

∂u0

∂ξ
+ v0 · ∇u0

}
= −∂p0

∂ξ
,

R

{
∂v0

∂t
+ s0

∂v0

∂ξ
+ v0 · ∇v0

}
= −∇p0 + ∇f0

∂p0

∂ξ
− RG∇f0,


(2.16)

where

s0 = u0 − f0,t − v0 · ∇f0. (2.17)

Embedded in the hydrodynamic zone is the pre-heated zone, which in turn contains
the much thinner reaction zone. The jump conditions across the pre-heated zone were
first derived by Pelce & Clavin (1982) for v, f � O(1), and by Matalon & Matkowsky
(1982) in the general case where v, f ∼ O(1). These are

[u0] = q[1 + (∇f0)
2]−1/2, [v0] = −q∇f0/[1 + (∇f0)

2]1/2, [p0] = −q. (2.18)

The front evolution is governed by the equation

f0,t = u0(0
−, η, ζ, t) − v0(0

−, η, ζ, t) · ∇f0 − [1 + (∇f0)
2]1/2. (2.19)

The results (2.18)–(2.19) were originally derived by assuming that the flow is
incompressible, and also by using the jump conditions across the reaction sheet.
Fortunately, they are valid for small-Mach-number flows because the acoustic pressure
does not affect directly the pre-heated or the reaction zone to leading-order. It only
contributes a small correction at a higher order (cf. Clavin et al. 1990). We shall
consider this effect in § 3.3.

The leading-order system (2.16)–(2.19) suffices for the most part of our work.
However, a more general result may be derived if the O(δ) correction is included.
The jumps at this order were obtained by Pelce & Clavin (1982) under linear
approximation, and by Matalon & Matkowsky (1982) for the nonlinear case but
without gravity. We repeated the analysis of the latter authors with gravity included,
and found that gravity only affected the jump in v1. For later application, these O(δ)
jumps are listed below:

[u1] = − lqD(q)

2m2
0

{
∇2f0 + m0∇ · v0 +

Dm0

Dt

}
− q

m3
0

∇f0 · ∇f1

+ χm0

{[
∂v0

∂ξ
· ∇f0

]
+ q∇ · ∇f0

m0

− q

m3
0

∇2f0 +
2q

m4
0

∇m0 · ∇f0

}
, (2.20)

[v1] = χ

{
q

1 + q

{
D̃v0

D̃t
+ ∇f0

D̃u0

D̃t
+

1

m0

D̃

D̃t
∇f0 + G∇f0

}
− q

m0

∇m0

}
− [u1]∇f0 − q

m0

(∇f1 − χ∇m0), (2.21)
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[p1] = −2m0[u1] + (Pr + χ)m2
0

{[
∂v0

∂ξ
· ∇f0

]
+ q∇ · ∇f0

m0

− q

m3
0

∇2f0 +
2q

m4
0

∇m0 · ∇f0

}
+

q

m0

∇2f0 − 2q

m2
0

∇f0 · ∇f1 − q

m2
0

∇f0 · ∇m0

+ ln(1 + q)

{
m0

Du0

Dt
+

1

m0

Dm0

Dt
+ ∇f0 ·

(
∇u0 +

1

m2
0

∇m0

)}
, (2.22)

where u0 and v0 and their derivatives are evaluated at the front ξ = 0−, and

m0 = [1 + (∇f0)
2]1/2, D(q) =

∫ ∞

0

ln(1 + q e−x) dx, χ = Pr +
1 + q

q
ln(1 + q),

D

Dt
=

∂

∂t
+ v0(0

−, η, ζ ) · ∇,
D̃

D̃t
=

D

Dt
+

∇f0 · ∇
m0

.

The function f1 satisfies the equation

f1,t = u1(0
−, η, ζ, t) − v0(0

−, η, ζ, t) · ∇f1 − v1(0
−, η, ζ, t) · ∇f0 − 1

m0

∇f0 · ∇f1

+

{
1 + q

q
ln(1 + q) + 1

2
lD(q)

}{
∇2f0 + m0∇ · v0 +

Dm0

Dt

}
. (2.23)

3. Strongly nonlinear sound–flame interaction: a general formulation
3.1. Acoustic zone

The appropriate variable describing the acoustic motion in this region is

ξ̃ = Mξ. (3.1)

Because the transverse length is much smaller than the longitudinal length, the motion
is a longitudinal oscillation about the uniform mean background, and the solution
can be written as

u = U± + ua(ξ̃ , t) + . . . , p = M−1pa(ξ̃ , t) + . . . , (3.2)

ρ = R + Mρa(ξ̃ , t) + . . . , θ = Θ + Mθa(ξ̃ , t) + . . . , (3.3)

where U± are the mean velocities behind and in front of the flame, respectively, with
U+ − U− = q . The unsteady field is governed by the linearized equations

∂ρa

∂t
+ R

∂ua

∂ξ̃
= 0, R

∂ua

∂t
= −∂pa

∂ξ̃
, (3.4)

R
∂θa

∂t
= (γ − 1)

∂pa

∂t
, γpa = Rθa + Θρa. (3.5)

Elimination of θa and ρa among the above equations yields the wave equation for the
pressure pa

R
∂2pa

∂t2
− ∂2pa

∂ξ̃ 2
= 0, R

∂ua

∂t
= −∂pa

∂ξ̃
. (3.6)

As ξ̃ → ±0,

ua → ua(0
±, t) + . . . , pa → pa(0, t) + pa,ξ̃ (0

±, t)ξ̃ + . . . .
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As will be shown in § 3.2, the acoustic pressure is continuous across the flame, but
the flame induces a jump in ua , i.e.

[pa] = 0, [ua] = q
{
(1 + (∇F0)2)1/2 − 1

}
, (3.7)

where φ stands for the space average of φ in the (η, ζ )-plane, and F0 is defined in
(3.8) below. Obviously, the jump [ua] acts as an acoustic source.

3.2. Hydrodynamic region

In the hydrodynamics region, ua and pa,ξ̃ appear spatially uniform on either side of the

flame, and can be approximated by their values at ξ̃ = 0±. In order to facilitate the
matching with the solution in the acoustic region, we subtract from the total field
the acoustic components as well as the mean background flow by writing

u0 = U± + ua(0
±, t) + U0,

p0 =
1

M
pa(0, t) + P± + pa,ξ̃ (0

±, t)ξ + (pa,ξ̃ (0
±, t) − RG)F0 + P0,

f0 = Fa + F0,

 (3.8)

where P± is the mean pressure (with P+ − P− = q), and

F ′
a = U− − 1 + ua(0

−, t).

Let v0 = V 0. Then it follows from (2.16)–(2.19) that the leading-order hydrodynamic
field satisfies the following equations

∂U0

∂ξ
+ ∇ · V 0 =

∂V 0

∂ξ
· ∇F0, (3.9)

∂U0

∂ξ
+ R

{
∂U0

∂t
+ S0

∂U0

∂ξ
+ V 0 · ∇U0

}
= −∂P0

∂ξ
− RJh(ξ )

∂U0

∂ξ
, (3.10)

∂V 0

∂ξ
+ R

{
∂V 0

∂t
+ S0

∂V 0

∂ξ
+ V 0 · ∇V 0

}
= −∇P0 + ∇F0

∂P0

∂ξ
− RJh(ξ )

∂V 0

∂ξ
, (3.11)

while the flame front is governed by

F0,t = U0(0
−, η, ζ ) − V 0(0

−, η, ζ ) · ∇F0 −
{
(1 + (∇F0)

2)1/2 − 1
}
, (3.12)

where h(ξ ) is the Heaviside step function, and

J = [ua], S0 = U0 − F0,t − V 0 · ∇F0. (3.13)

If no vortical fluctuation is present in the oncoming flow, then matching with the
outer acoustic solution requires that

U0 → 0, V 0 → 0, P0,ξ → 0 as ξ → ±∞. (3.14)

However, non-zero far-field conditions must be imposed if the oncoming flow carries
vortical disturbances.

The unsteady pressure and transverse velocity jumps are

[P0] = [(R+ − R−)G − (pa,ξ̃ (0
+, t) − pa,ξ̃ (0

−, t))]F0,

[V 0] = −q∇F0/[1 + (∇F0)
2]1/2.

}
(3.15)

The first relation implies that the effect of sound on the flame is somewhat analogous
to that of gravity, i.e. it generates the effective acceleration.
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The hydrodynamic motion affects the ambient acoustic regions by inducing a
longitudinal velocity jump. To derive this key result, we take the spatial average of
(3.9) in the (η, ζ )-plane, and then integrate with respect to ξ to obtain

U0 = V 0 · ∇F0, (3.16)

where the overbar denotes the mentioned spatial average. Inserting the first equation
in (3.8) into (2.18) and taking the spatial average of the first jump relation in (2.18),
we find

[ua] = −[V 0 · ∇F0] + q
{
(1 + (∇F0)2)−1/2 − 1

}
which, by virtue of the second relation in (3.15), simplifies to

J = [ua] = q
{
(1 + (∇F0)2)1/2 − 1

}
. (3.17)

On the scale of acoustic wavelength, the right-hand side of the above is equivalent
to a concentrated unsteady heat release rate, which is shown to be proportional to
the increase of the flame surface area. Result (3.17) is of fundamental significance.
It implies that a curved flame evolving on the acoustic time scale of the duct must
generate sound, that is, acoustic field is an integral part of the flame. We are not
aware of a previous mathematical derivation of this relation, though it has been
employed on the physical ground by Pelce & Rochwerger (1992), Fleifil et al. (1996)
and Ducruix et al. (2000) to formulate their flame–acoustic coupling theories.

The jump condition across the flame for U0 becomes

[U0] = q
{
(1 + (∇F0)

2)−1/2 − (1 + (∇F0)2)1/2
}
. (3.18)

The hydrodynamic equations (3.9)–(3.12) and the acoustic equations (3.6) form an
overall interactive system via the jump conditions (3.7) and (3.15). The nature of
the interaction between the flame and sound is explicit: the flame generates sound
through the change of its surface area, while sound modulates the flame by producing
an effective acceleration.

The asymptotically reduced system uses two distinct spatial variables to describe two
distinct motions so that, in terms of ξ̃ , the acoustic motion has an O(1) characteristic
speed (see (3.6)), comparable with the hydrodynamic velocity. This has a significant
advantage from the numerical point of view, because the sound speed now does not
impose a severe restriction on the time step. The reduced system thus avoids the
major difficulty associated with the numerical approximation of the original system.

3.3. Coupling via the direct effect of pressure on the burning velocity

In § § 3.1 and 3.2, the acoustic pressure is shown to modulate the hydrodynamic field
associated with the flame, thereby affecting the flame motion. An additional effect of
pressure is to influence the enthalpy balance, thereby modifying the burning velocity.
Acoustic–flame coupling through this mechanism will be considered in this subsection.

The effect of external pressure variations on premixed flames was analysed by Peters
& Ludford (1984) for a one-dimensional flame and by Keller & Peters (1994) for a
general three-dimensional flame. Both investigations were concerned with a slowly
varying pressure in the sense that the time scale is much larger than O(d/UL), the
transit time scale. McIntosh (1991, 1993) and McIntosh & Wilce (1991) demonstrated
that several distinct regimes emerge depending on the characteristic time scales of the
pressure fluctuation. They analysed in detail the response of the burning rate in each
regime for a one-dimensional flame.

An important observation is that a small-amplitude pressure variation of O(β−1)
may exert an order-one effect on the flame speed. In our problem, the acoustic
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pressure, that is generated owing to the change in the flame surface area, is of O(M),
and thus it will produce an O(βM) modification to the flame burning velocity. To
analyse this effect, it is convenient to work with the enthalpy h, defined as

θ + qY = 1 + q + β−1h.

In the hydrodynamic region, h expands as

h = βMH̃ + . . . ,

and H̃ satisfies

∂H̃

∂ξ
+ R

{
∂H̃

∂t
+ S0

∂H̃

∂ξ
+ V 0 · ∇H̃

}
= (γ − 1)

∂pa

∂t
− RJh(ξ )

∂H̃

∂ξ
.

Assuming that there is no enthalpy fluctuation present in the upstream, we have for
ξ < 0,

H̃ = R−1
− (γ − 1)pa(0, t) ≡ θa(0

−, t).

The above expression, however, does not satisfy the equation for ξ > 0, where the
solution may be written as

H̃ = R−1
+ (γ − 1)pa(0, t) + H̃ e

with H̃ e satisfying the equation

∂H̃ e

∂ξ
+ R+

{
∂H̃ e

∂t
+ S0

∂H̃ e

∂ξ
+ V 0 · ∇H̃ e

}
= −R+J∂H̃ e

∂ξ
,

and the boundary condition

H̃ e → −q(γ − 1)pa(0, t) as ξ → 0.

The relevant solution is independent of η and ζ , and can be written in an implicit form
using characteristics. We shall omit it since it is not needed for the subsequent analysis.
Nevertheless, it is worth noting that H̃ e represents the enthalpy motion downstream
of the flame front that is generated by the acoustic pressure. This interpretation is
best illustrated by noting that in the linear limit,

H̃ e = −q(γ − 1)pa(0, t − ξ/(1 + q)),

which corresponds to the reactant mass fraction Ỹ = −(γ − 1)pa(0, t − ξ/(1 + q)),
implying that unburned material is advected downstream.

To take account of the O(βM) effect, the expansion for u, v, p and f must be
extended to

(u, v, p, f ) = (u0, v0, p0, f0) + δ(u1, v1, p1, f1) + βM(Ũ , Ṽ , P̃ , f̃ ) + . . . .

In order to derive the jumps in Ũ , Ṽ and P̃ , we must consider the pre-heated zone.
According to the discussion in § 1, the appropriate longitudinal variable describing

the the pre-heated zone is ξ̂ = ξ/δ. The expansion takes the form

h = h0 + δh1 + βMh̃ + . . . ,

θ = θ0 + δθ1 + βMθ̃ + . . . ,

m = m0 + δm1 + βMm̃ + . . . ,

u = u0 + δu1 + βMũ + . . . ,

v = v0 + δv1 + βM ṽ + . . . ,
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where m = ρs. The solutions at the first two orders are given by Matalon & Matkowsky
(1982), and in particular

θ0 = 1 + q eξ̂ /m0, h0 = − ql

m0

ξ̂ eξ̂ /m0 .

Let us now consider h̃ and θ̃ . They are governed by the equations

m0

∂θ̃

∂ξ̂
− m2

0

∂2θ̃

∂ξ̂ 2
= −m̃

∂θ0

∂ξ̂
+ 2∇f0 · ∇f̃

∂2θ0

∂ξ̂ 2
,

m0

∂h̃

∂ξ̂
− m2

0

∂2h̃

∂ξ̂ 2
= −m̃

∂θ0

∂ξ̂
+ lm2

0

∂2h̃

∂ξ̂ 2
+ 2∇f0 · ∇f̃

[
l
∂2θ0

∂ξ̂ 2
+

∂2h0

∂ξ̂ 2

]
.

 (3.19)

Note that the acoustic pressure does not appear in the equations. Across the reaction

sheet at ξ̂ = 0, the following jump conditions hold (Matkowsky & Sivashinsky 1979)

[h̃] = [θ̃ ] = 0,

[
l
∂θ̃

∂ξ̂
+

∂h̃

∂ξ̂

]
= 0, m0

[
∂θ̃

∂ξ̂

]
= − 1

2
qh̃(0) +

q

m2
0

∇f0 · ∇f̃ .

For ξ̂ > 0, the right-hand sides of (3.19) are identically zero, implying that θ̃ = 0 and

h̃ = h̃(η, ζ, t). For ξ̂ < 0, the solution is found to be

θ̃ =
q

m2
0

(
m̃ − 2

m0

∇f0 · ∇f̃

)
ξ̂ exp(ξ̂ /m0),

h̃ = h̃−∞ − l

{
q

m2
0

(
m̃ − 2

m0

∇f0 · ∇f̃

)
+

q

m3
0

(
m̃ − 2

m0

∇f0 · ∇f̃

)
ξ̂

}
ξ̂ exp(ξ̂ /m0),

m̃ = 1
2
m0h̃−∞ +

1

m0

∇f0 · ∇f̃ .

Matching with the solution in the upstream hydrodynamic zone yields

h−∞ = H̃ (0, t) = (γ − 1)pa(0, t).

Note that the acoustic pressure affects the flame speed by modifying the enthalpy
upstream of the flame zone, rather than by acting on the enthalpy in the flame zone
directly. The latter process produces a much smaller effect of O(δβM) (cf. Keller
& Peters 1994). If the flame is taken to be flat, the present result reduces to the
low-frequency limit of Clavin et al. (1990) and McIntosh (1991). It is also consistent
with that of Harten et al. (1984) if allowance is given to the difference in the assumed
pressure amplitudes.

Consideration of ũ and ṽ determines the jumps across the flame zone for the
velocity and pressure in the hydrodynamic region,

[Ũ ] =
q

m0

(
1
2
h̃−∞ − 1

m2
0

∇f0 · ∇f̃

)
,

[Ṽ ] = − q

m0

{
∇f̃ +

(
1
2
h−∞ − ∇f0 · ∇f̃

m2
0

)
∇f0

}
, [P̃ ] = −qh−∞,

(3.20)

while the front equation is found to be

f̃ t + V 0 · ∇f̃ + Ṽ · ∇f0 = Ũ (0−, η, ζ ) − 1

m0

∇F0 · ∇f̃ − 1
2
m0h̃−∞.
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These relations imply that enthalpy in general would induce vortical hydrodynamic
motion.

To see how the O(βM) hydrodynamic field is coupled to the acoustic field, we note
that expanding the continuity equation to O(βM) gives

∂Ũ

∂ξ
+ ∇ · Ṽ =

∂V 0

∂ξ
· ∇f̃ +

∂ Ṽ
∂ξ

· ∇F0. (3.21)

Taking the average of this equation in the (η, ζ )-plane, and integrating from −∞ to
∞, we obtain

[ũa] − [Ũ ] = −[V 0] · ∇f̃ − [Ṽ ] · ∇F0 = q

(
1

m0

+
1

m3
0

)
∇F0 · ∇f̃ + 1

2
qh−∞

(∇F0)2

m0

. (3.22)

Equation (3.20) is then spatially averaged, and combined with (3.22) to give [ũa]. This
O(βM) acoustic jump is added to (3.7), leading to

[ua] = q
{
(1 + (∇F0)2)1/2 − 1

}
+ βMq

{
1
2
h−∞[1 + (∇F0)2]1/2 +

∇F0 · ∇f̃

m0

}
, (3.23)

which is a generalization of (3.7). Clearly, for strongly wrinkled flames (i.e.
∇F0 ∼ O(1)), the change of flame surface area, is the dominant mechanism for sound
generation. For weakly wrinkled flames for which ∇F0 ∼ (βM)1/2, the two terms are
formally comparable.

4. A weakly nonlinear case
A flat flame may become unstable owing to differential diffusivity of mass and heat,

or to the hydrodynamic effect associated with gas expansion. The latter is the D-L
instability mentioned in § 1. An interesting and important question is: how large-scale
combustion instability is related to flame instabilities, which occur over small scales
over which the unsteady flow can be treated as incompressible. A natural proposal
is that combustion instability arises when acoustic modes of the chamber are excited
and amplified by the flame instabilities through mutual resonance. D-L instability
perhaps is the most important candidate for driving combustion instability since,
for most mixtures, the Lewis number is close to unity so that the instability due to
differential diffusivity is ruled out.

In general, D-L instability occurs at all wavenumbers and its growth rate is
proportional to the wavenumber. However, it can be stabilized by the gravity effect,
which introduces a small wavenumber cutoff (Pelce & Clavin 1982). The mode with
this cutoff wavenumber is nearly neutral. On the other hand, an acoustic mode is
neutral on the linear basis. A nonlinear interaction can take place between the two
even when their respective magnitudes are still small. Such a weakly nonlinear effect
can be analysed by using the general formulation in § 3, as will be shown in this
section. The present analysis is motivated by the experiments of Searby (1992), where
such a weakly nonlinear coupling apparently operates.

4.1. Analysis of the hydrodynamics of the flame

For simplicity, we assume that the flame is two dimensional. The flame is stable when
the flame speed UL is less than the critical value

Uc ≡
(

gh∗

π(1 + q)

)1/2

, (4.1)
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as was shown by Pelce & Clavin (1982); see also below. A D-L mode with wavenumber
k = π is nearly neutral when UL is close to Uc. Suppose that the magnitude of such
a mode is of O(ε). Then the weakly nonlinear interaction takes place over the time
scale of O(ε−2) (Stuart 1960), and thus we introduce the slow variable

τ = ε2t. (4.2)

In keeping with this, UL is assumed to deviate from its critical value Uc by O(ε2), and
thus we write

gh∗

U 2
L

= π(1 + q) + ε2gd ≡ Gc + ε2gd with gd = O(1). (4.3)

To take into account the O(δ) effect of the Markstein length, which is associated with
the diffusion structure of the flame, we assume that

δ = O(ε2),

and without losing generality we take ε2 = δ. We shall further assume that

ε ∼ (βM)1/2

so as to include the direct pressure effect on the sound amplification.
The velocity and pressure in the hydrodynamic region expand as

(U0, V0, P0) = ε(Û 1, V̂ 1, P̂ 1) + ε2(Û 2, V̂ 2, P̂ 2) + ε3(Û 3, V̂ 3, P̂ 3) + . . . . (4.4)

The expansion of F0 is somewhat unusual and has the form

F0 = F̂ 0(τ ) + εF̂ 1 + ε2F̂ 2 + ε3F̂ 3 + . . . , (4.5)

where the O(1) term is due to the accumulated effect of stretching and advection.
Substituting the expansion into (3.9)–(3.12) and expanding to O(ε3), we obtain a

sequence of equations at O(εn) (n= 1, 2, 3). The leading-order solution was given by
(cf. Pelce & Clavin 1982)

(Û 1, P̂ 1, F̂ 1) = A(τ ){(−P ± e∓kξ +C±), P ± e∓kξ , F1}(eikη +c.c.),

V̂ 1 = ±A(τ )P ± e∓kξ (i eikη +c.c.),

}
(4.6)

where A is the amplitude function of the D-L mode and is real, C− = 0 to satisfy
the zero velocity fluctuation condition upstream. The wavenumber k = π so that the
boundary condition, V̂ 1 = 0 at η =0, 1, is satisfied. The front equation implies that
P − = 0. The jump conditions are the linearized version of (3.15) and (3.18), i.e.

P + = (R+ − R−)GcF1, −P + + C+ = 0, P + = −qkF1.

The requirement of a non-zero solution gives the leading-order eigen-relation (4.1).
The eigenfunction is normalized by setting F1 = 1, and then

P + = C+ = −qπ ≡ P.

We may be concerned with the fact that Û 1 does not decay to zero as ξ → ∞. This
seemingly worrying issue is resolved in Appendix B, where we show that decay occurs
in a thicker ‘buffer layer’.

To proceed to higher orders, we need to know pa,ξ̃ (0
±, t), and according to the later

analysis in § 4.2,

pa,ξ̃ (0
±, t) = −εR±(iωBûa,1 eiωt +c.c.) ≡ −εR±ũ′

a,1(0, t).
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The O(ε2) terms in (4.4) and (4.5) are governed by the following system of equations

∂Û 2

∂ξ
+

∂V̂ 2

∂η
=

∂V̂ 1

∂ξ

∂F̂ 1

∂η
, (4.7)

R
∂Û 2

∂t
+

∂Û 2

∂ξ
= −∂P̂ 2

∂ξ
− R

{
Û 1

∂Û 1

∂ξ
+ V̂ 1

∂Û 1

∂η

}
, (4.8)

R
∂V̂ 2

∂t
+

∂V̂ 2

∂ξ
= −∂P̂ 2

∂η
− R

{
Û 1

∂V̂ 1

∂ξ
+ V̂ 1

∂V̂ 1

∂η

}
+

∂P̂ 1

∂ξ

∂F̂ 1

∂η
, (4.9)

F̂ 0,τ + F̂ 2,t = Û 2(0
−, η, t) − V̂ 1(0

−, η, t)
∂F̂ 1

∂η
− 1

2

(
∂F̂ 1

∂η

)2

. (4.10)

The jumps follow from the expansion of (3.15) and (3.18), which shows that at O(ε2),

[Û 2] = − 1
2
q[(∇F̂ 1)

2 + (∇F̂ 1)2],

[V̂ 2] = −q∇F̂ 2,

[P̂ 2] = (R+ − R−)(GcF̂ 2 + ũ′
a,1(0, t)F̂ 1),

 (4.11)

As the forcing terms on the right-hand side indicate, there exists a mutual interaction
between the sound and flame as well as the self-interaction of the flame. Inspection
of the forcing terms suggest that the solution takes the form

Û 2 = Û 2,a(e
ikη +c.c.) eiωt + c.c.+ Û 2,2A

2(e2ikη + c.c.) + Û 2,0A
2,

V̂ 2 = V̂ 2,a(i e
ikη +c.c.) eiωt +c.c.+ V̂ 2,2A

2(i e2ikη + c.c.),

P̂ 2 = P̂ 2,a(e
ikη + c.c.) eiωt + c.c.+ P̂ 2,2A

2(e2ikη + c.c.) + P̂ 2,0A
2,

F̂ 2 = F̂ 2,a(e
ikη + c.c.) eiωt + c.c.+ F̂ 2,2A

2(e2ikη + c.c.).

 (4.12)

The solution as well as the jump conditions across the flame are given in Appendix A.
It suffices to note that

Û 2,a =
±kP

±
2,a

iR±ω ∓ k
exp(∓kξ ) + D± exp(−iR±ωξ ). (4.13)

The term with the coefficient proportional to D− represents the fluctuation associated
with the convected vorticity or gust in the oncoming fresh mixture. In reality, the
vortical disturbance is random in both time and space. Here we have taken the specific
component which has the same frequency as that of the acoustic mode of the duct,
and the transverse wavenumber twice that of the D-L mode so that a resonant triad
interaction takes place between them. D+ measures the vorticity fluctuation behind the
flame, and it can be expressed in terms of D− and the forcing arising from the flame–
sound interaction. It turns out that D+ �= 0 even if D− = 0, implying that vorticity
is generated by a longitudinal acoustic wave. Lieuwen (2001) showed that vorti-
city is generated as an oblique sound wave propagates through a flame. The two
vorticity generation mechanisms, however, are different: that in the present study is
nonlinear, involving a sound wave interacting with (the hydrodynamic field of) the
flame, while that in Lieuwen (2001) is a purely linear mechanism.

In addition to the vortical disturbance, entropic perturbations in the oncoming flow
may also interact with the flame to generate sound. However, it turns out that an
entirely self-consistent treatment of this effect requires a substantial reformulation
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of the theory at the onset. This has been done already and will be published in a
forthcoming paper.

We now proceed to the cubic order, and the governing equations are found to be

∂Û 3

∂ξ
+

∂V̂ 3

∂η
=

∂V̂ 1

∂ξ

∂F̂ 2

∂η
+

∂V̂ 2

∂ξ

∂F̂ 1

∂η
, (4.14)

R
∂Û 3

∂t
+

∂Û 3

∂ξ
= −∂P̂ 3

∂ξ
− RA′Û 1,τ − R

{
Û 1

∂Û 2

∂ξ
+ Û 2

∂Û 1

∂ξ
+ V̂ 1

∂Û 2

∂η
+ V̂ 2

∂Û 1

∂η

}
+ R

{
F̂ 0,τ + F̂ ′

2 + V̂ 1

∂F̂ 1

∂η

}
∂Û 1

∂ξ
− RĴh(ξ )

∂Û 1

∂ξ
+ Pr∇2Û 1, (4.15)

R
∂V̂ 3

∂t
+

∂V̂ 3

∂ξ
= −∂P̂ 3

∂η
− RAV̂ 1,τ − R

{
Û 1

∂V̂ 2

∂ξ
+ Û 2

∂V̂ 1

∂ξ
+ V̂ 1

∂V̂ 2

∂η
+ V̂ 2

∂V̂ 1

∂η

}
+R

{
F̂ 0,τ + F̂ ′

2 + V̂ 1

∂F̂ 1

∂η

}
∂V̂ 1

∂ξ
− RĴh(ξ )

∂V̂ 1

∂ξ
+ Pr∇2V̂ 1

+
∂P̂ 1

∂ξ

∂F̂ 2

∂η
+

∂P̂ 2

∂ξ

∂F̂ 1

∂η
, (4.16)

where Ĵ = qk2A2. At this order, it is only necessary to consider the component which
coincides with the fundamental of the D-L mode, and thus we write

(Û 3, P̂ 3, F̂ 3) = (Û 3,1, P̂ 3,1, F̂ 3,1)(e
ikη + c.c.),

V̂ 3 = V̂ 3,1(i e
ikη +c.c.).

}
(4.17)

The solution for P̂ 3,1, Û 3,1 and V̂ 3,1 are given by (A 10)–(A 12) in Appendix A.
The jump conditions and the front equation at this order need some attention. A

direct expansion of (3.15), (3.18) and (3.12) shows that at O(ε3),

[Û 3] = −q∇F̂ 1 · ∇F̂ 2,

[V̂ 3] = −q∇F̂ 3 + 1
2
q(∇F̂ 1)

2∇F̂ 1,

[P̂ 3] = (R+ − R−)(GcF̂ 3 + gdF̂ 1 + Bũ′
a,1(0, t)F̂ 2),

 (4.18)

F̂ 1,τ + F̂ 3,t = Û 3(0
−, η, t) − V̂ 1 · ∇F̂ 2 − V̂ 2 · ∇F̂ 1 − ∇F̂ 1 · ∇F̂ 2. (4.19)

However, since we assume that δ = O(ε2), the (εδ) terms in (2.15) are of the same
order as the O(ε3) terms in the expansion (4.6). They must then be combined to give

[Û 3,1] = 1
2
lqD(q)k2A − 2qk2F̂ 2,2A

3,

[V̂ 3,1] = −kqF̂ 3,1 + χqk2A + 3
2
qk3A3,

[P̂ 3,1] = −lqD(q)k2A − qk2A

+ (R+ − R−)[GcF̂ 3 + gdA+ (iωF̂ 2,aûa,1(0)B + c.c.)],

 (4.20)

A′ = Û 3,1(0
−) − 2k2F̂ 2,2A

3 − kV̂ 2,2(0
−)A3 − k2

{
1 + q

q
ln(1 + q) + 1

2
lD(q)

}
A. (4.21)

Inserting into (4.20) and (4.21) the solution for P̂ 3,1, Û 3,1, we obtain the system

Mα = b, (4.22)
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for α = (P +
3,1, P

−
3,1, F̂ 3,1, C

+
3,1), where the matrix

M =

 1 −1 qk 0
−1 1 0 1

1 1 qk 0
0 −1 0 0

 , (4.23)

and the inhomogeneous term b = (b1, b2, b3, b4)
T is given by

b1 = A3
{
R+

(
2P +

2,2 + 2R+P 2 − 16
3
kP

)
P − 4

3
R+P +

2,2P + 2(P +
2,2 + P −

2,2)k
}

− (R+ − R−)(iωF̂ 2,aû
∗
a,1(0)B∗ + c.c.) − qgd

1 + q
A − lqD(q)k2A − qk2A,

b3 = A3
{
R+(R+P 2 − 5kP )P + R+(C+

2,2 + qk2 + k2)P + 1
3
R+P +

2,2P + 2
3
R2

+P 3

− 2kP F̂ 2,2 + 2k(P +
2,2 − P −

2,2) + 3
2
qk3

}
+ ln(1 + q)(kGc)A,

b4 = A′ + (kP −
2,2 + 2k2F̂ 2,2)A

3 + k2

{
1 + q

q
ln(1 + q) + 1

2
lD(q)

}
A.

The expression for b2 is omitted since it is not needed. Because the matrix M is
singular, (4.22) has a solution only when the solvability condition b3 − b1 + 2b4 = 0 is
satisfied, which implies that

A′ = κA + γsA
3 − γb|B|2A + lsD

−B∗ + l∗
s D

−∗B, (4.24)

where the linear growth rate

κ = − q

2(1 + q)
gd − 1

2
k2

{
q +

1 + q

q
((q + 2) ln(1 + q) + lqD(q))

}
, (4.25)

while the coefficients of the nonlinear terms are given by

γs =

{
− 1

2
q + 3

2
+

2

q

}
k3 = (4 − q)(1 + q)k3/(2q), (4.26)

γb =
4(R+ − R−)2(1 + R+/R−)kω2 sin2

(
R

1/2
− σωL

)
(R+ + R−)2ω2 + 4k2

, (4.27)

ls =
2(R+ − R−)R−1/2

− (iR−ω + k) sin
(
R

1/2
− σωL

)
i(R+ + R−)ω + 2k

. (4.28)

4.2. Analysis of the acoustics

The pressure and velocity of the acoustic fluctuation are expanded as

pa = εB(τ )pa,1 + ε3pa,2 + . . . , ua = εB(τ )ua,1 + ε3ua,2 + . . . , (4.29)

where B is the amplitude function.
To leading-order, pa,1 and ua,1 satisfy (3.6), and the solution consists of sound

waves travelling to the left and right, namely

pa,1 = exp(iωt)
{
a±

r exp
(
−iR1/2

± ωξ̃
)

+ a
±
l exp

(
iR1/2

± ωξ̃
)}

+ c.c.

≡ p̂a,1 exp(iωt) + c.c.

ua,1 = exp(iωt)R−1/2
±

{
a±

r exp
(
−iR1/2

± ωξ̃
)

− a
±
l exp

(
iR1/2

± ωξ̃
)}

+ c.c.

≡ ûa,1 exp(iωt) + c.c.

 , (4.30)
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where a±
r and a

±
l are constants, and for convenience we take a−

l = exp(iR1/2
− σωL).

The end conditions are

ua,1 = 0 at ξ̃ = −σL, pa,1 = 0 at ξ̃ = (1 − σ )L (4.31)

where L is related to the dimensional length of the duct l∗ via

L = Ml∗/h∗,

and σ is a parameter characterizing the mean position of the flame front. Both ua,1

and pa,1 are continuous across the flame, i.e.

[ua,1] = 0, [pa,1] = 0, (4.32)

as indicated by the expansion of (3.7). Application of these conditions leads to the
dispersion relation of the acoustic mode (cf. Clavin et al. 1990; Pelce & Rochwerger
1992) (

R+

R−

)1/2

tan
(
R1/2

− σωL
)
tan

(
R

1/2
+ (1 − σ )ωL

)
= 1, (4.33)

which determines the characteristic frequency of the duct.
Inserting (4.29) into (3.6), then at O(ε3), we have

R
∂2pa,2

∂t2
− ∂2pa,2

∂ξ̃ 2
= −2RiωB ′(τ )pa,1, R

∂ua,2

∂t
= −∂pa,2

∂ξ̃
− RB ′(τ )ua,1, (4.34)

whose solutions are found to be

pa,2 = exp(iωt)
{(

b±
r exp

(
−iR1/2

± ωξ̃
)

+ b
±
l exp

(
iR1/2

± ωξ̃
))

− R
1/2
± B ′ξ̃

(
a±

r exp
(
−iR1/2

± ωξ̃
)

− a
±
l exp

(
iR1/2

± ωξ̃
))}

+ c.c.,

ua,2 = exp(iωt)
{
R

−1/2
±

(
b±

r exp
(
−iR1/2

± ωξ̃
)

− b
±
l exp

(
iR1/2

± ωξ̃
))

− B ′ξ̃
(
a±

r exp
(
−iR1/2

± ωξ̃
)

+ a
±
l exp

(
iR1/2

± ωξ̃
))}

+ c.c.

It follows from substituting F0 into (3.23) and expanding to O(ε3) that

[pa,2] = 0, [ua,2] =
(
2qk2F̂ 2,aA + 1

2
q(βM/ε2)ĥ−∞

)
eiωt +c.c., (4.35)

where ĥ−∞ =(γ − 1)p̂a,1(0)B . The above relations together with the end conditions,
ua,2 = 0 at ξ̃ = −σL and pa,2 = 0 at ξ̃ = (1 − σ )L, give rise to the following 4×4 system

for b±
r and b

±
l :

1 1 −1 −1

1 −1 −
√

R−
R+

√
R−
R+

1 −exp
(
−2iR1/2

− σωL
)

0 0

0 0 1 exp
(
2iR1/2

+ (1 − σ )ωL
)




b−
r

b−
l

b+
r

b+
l

= d (4.36)

where

d =


0

−R
1/2
−

(
2k2qF̂ 2,aA + 1

2
q(βM/ε2)ĥ−∞

)
,

−R
1/2
− σL

(
a−

r + a−
l exp

(
−2iR1/2

− σωl
))

B ′,

R
1/2
+ (1 − σ )L

(
a+

r − a+
l exp

(
2iR1/2

+ (1 − σ )ωL
))

B ′.

 (4.37)
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Since the matrix on the left-hand side of (4.36) is singular due to (4.33), a solvability
condition is required, which leads to the amplitude equation for the acoustic mode

B ′(τ ) = χsA
2B + mpB + msD

−A, (4.38)

where

χs = − i2qk3R
−1/2
− (R+ − R−)Λ

L(i(R+ +R−)ω + 2k)
, ms =

2qk2(iR−ω + k)Λ

iωL(i(R+ + R−)ω + 2k)sin
(
R

1/2
− σωL

) , (4.39)

mp =
βM(γ − 1)qΛ

2ε2L
cot

(
R1/2

− ωσL
)
, (4.40)

with

Λ=
tan

(
R

1/2
− σωL

)
σ sec2

(
R

1/2
− σωL

)
+ (1 − σ )(R+/R−)sec2

(
R

1/2
+ (1 − σ )ωL

)
tan2

(
R

1/2
− σωL

) . (4.41)

5. Study of amplitude equations
5.1. Comments on the acoustic–flame coupling mechanisms

The sound–flame interaction is thus described by the system of coupled amplitude
equations (4.24) and (4.38), i.e.

A′ = κA + γsA
3 − γb|B|2A + lsD

−B∗ + l∗
s D

−∗B,

B ′ = χsA
2B + mpB + msD

−A.

}
(5.1)

For the case where no vortical perturbations are present in the oncoming fresh
mixture (D− = 0), the amplitude equations simplify to

A′(τ ) = κA + γsA
3 − γb|B|2A, (5.2)

B ′(τ ) = χsA
2B + mpB. (5.3)

The first and second terms on the right-hand side of (5.3), χsA
2B and mpB , represent

two distinct sound amplification mechanisms: the change of flame surface area and
the pressure effect, respectively. For a flat flame, A ≡ 0, and hence B ′ =mpB . This
reduces to the case studied by Clavin et al. (1990).

Now if the flame amplitude A is (artificially) taken to be a constant (and the
pressure effect term is dropped), then equation (5.3) reduces to the result of Pelce &
Rochwerger (1992), which predicts that sound intensity B amplifies exponentially.
This captures an important aspect of Searby’s experiments. However, the coupling
in their model is one way, since the back effect of sound on the flame is neglected,
and as a result it was incapable of describing the whole evolution process observed.
The present work includes this back effect as well as the self-nonlinearity of the D-L
mode. This leads to a more complete description of the experiments of Searby (1992);
see below.

The effects of the nonlinear interactions transpire if we inspect the signs of the
coefficients. According to (4.39) and (4.27), (χs) > 0 and γb > 0, indicating that the
flame always acts to amplify the acoustic field, while the sound inhibits the flame. Note
also that γs is positive (negative) for q < 4 (q > 4), and hence the self-nonlinearity of
the flame is destabilizing for q < 4 and stabilizing for q > 4.

When a vortical disturbance is present in the oncoming fresh mixture, the sound–
flame coupling is described by the full equations (5.1). As in aeroacoustics and
unsteady aerodynamics, vortical disturbances in the form of convected gust represent
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‘weak turbulence’. The effect of such large-scale weak turbulence has been studied
previously by Williams (1970), Clavin & Williams (1979, 1982) and Searby & Clavin
(1986), with the primary interest being to predict the spectra or root-mean-squares
of the fluctuations in the flame thickness and speed. All these studies were, however,
restricted to stable flames, excluding any form of instability and acoustic modes.
The present study appears to be the first analysis of the interaction between an
external perturbation and a (marginally) unstable flame. Though the coupling terms
(lsB

∗ + l∗
s B) and msA in (5.1) arise because of a resonant-triad interaction between

the acoustic and D-L modes mediated by the gust, i.e. the sound interacts with the
gust to influence the D-L mode, and at the same time the D-L mode interacts with
the gust to affect the sound.

In the analysis above, we assumed that D− = O(1), which corresponds to a vortical
disturbance with small magnitude of O(ε2). If D− � 1, the triadic effect would be
dominant. In fact, the triadic interaction is a distinct coupling mechanism, which
in principle may operate independently. To illustrate this point, we introduce the
substitutions τ → τ̃ /D− into (5.1) and take the limit D− → ∞. Then the amplitude
equations to leading order reduce to

A′(τ̃ ) = κ̃A + lsB
∗ + l∗

s B, B ′(τ̃ ) = msA, (5.4a, b)

where κ̃ = −(G − Gc)q/(2(1 + q)ε2D−) = O(1). Elimination of B in (5.4) leads to

A′′ = κ̃A′ + (lsm
∗
s + l∗

s ms)A,

where we have used the fact that A is real-valued. The coefficient of the second term
on the right-hand side turns out to be identically zero in view of (4.39) and (4.28).
Therefore, A ∼ eκ̃ τ̃ , implying that the growth of the D-L mode is actually unaffected
by the coupling. It follows from (5.4b) that B ∼ κ̃−1 eκ̃ τ̃ , that is, the acoustic mode
is ‘locked’ with the D-L mode through the triadic interaction. The system (5.1) then
unifies the newly identified and existing mechanisms.

The present sound-generation mechanism by vortical disturbances differs from
those known previously. Since it involves a nonlinear triadic interaction with the
D-L mode, it clearly differs from that due to the direct interaction between acoustic
and vortical modes considered in Chu & Kovasznay (1958). It is known that a
convected gust with its wavefront almost perpendicular to the flame produces sound,
as was pointed out by Markstein (1964). In essence, what Markstein showed was
that when compressibility is included, certain D-L modes become radiating, i.e. merge
with acoustic modes. They can be excited by vortical disturbances through the rather
familiar linear coupling at a discontinuity (here a frame front); the surface area change
due to the flame wrinkling does not play any role. The acoustic modes are neither
decaying nor growing, and propagate away from both sides of the flame. Therefore
the vortical disturbances lead to sound radiation rather than an acoustic instability.
This is in contrast to the present mechanism, which is nonlinear as emphasized above
and in which sound amplifies because of the flame surface area being modulated by
the vortical disturbances.

5.2. Numerical study of amplitude equations

We evaluate the coefficients for the following parameter values

h∗ = 10 cm, l∗ =120 cm, (R− − R+)/R− = 0.84 (or equivalently q = 5.25),

D∗
th = 0.22 cm2 s−1, a∗ = 340 m s−1, Le = 0.93, β = 12, γ = 1.4.

}
(5.5)
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These parameters are chosen to be close to those in Searby’s (1992) experiments,
which were conducted in a 120 cm long tube with a diameter of 10 cm using premixed
propane. The equivalence ratio is about 0.7 ∼ 0.77, for which the Lewis number
Le =0.93. The observations that are relevant for our theory correspond to laminar
flame speeds UL = 16 ∼ 25 cm s−1, and a typical measurement was presented in figure
3 of Searby (1992) for UL = 22.3 cm s−1. Note that for a tube, these speeds are in the
supercritical regime since the critical speed is about 14.3 cm s−1 for the parameters
given in (5.5).

In our calculation, we take the laminar flame speed UL = 24 cm s−1. This is about
9% above the critical laminar flame speed for neutral stability, which for a duct is
22.3 cm s−1 according to (4.1). It seems reasonable to expect the weakly nonlinear
theory to be valid in such a moderate supercritical condition. The small parameter

ε = (d/h∗)1/2 = (h∗UL/D∗
th)

−1/2 = 0.0303.

Figure 2 shows the variation of the coefficients with σ̂ ≡ (1 − σ ), a parameter
characterizing the mean flame position. Of particular interest is figure 2(b), which
shows that sound amplification due to the pressure effect (as measured by mp) is
negligible in the upper half of the duct, but becomes appreciable in the lower half.
The coefficient χs , which measures flame–sound coupling due to the change of flame
surface area, peaks at a location in the lower half of the duct. This, however, does
not necessarily mean that sound would be mainly generated in this region because
the true contribution to sound depends also on A2.

In general, the flame moves along the duct. Its mean position is given by

xm = xr + (U− − 1)t − k2

∫ τ

0

F̂ 0 dτ = xr + (U− − 1)t − k2

∫ τ

0

A2 dτ,

where xr is a reference position of the flame at the time τ = 0, and the integral term
is associated with the increased flame speed due to flame curvature.

For the flame to be stationary relative to the duct, the feeding speed of the fresh
mixture, U−, must be continuously adjusted. For simplicity, we first assume this to be
the case. Equation (5.1) can be integrated subject to the initial conditions

A = A0, B = B0 at τ = 0.

In the following, we take A0 = 1.6 (or εA0 = 0.05). In order to relate more closely
with the physical quantities, the results will be presented for εA and εB in terms of
the original time variable t .

The evolution of the sound and flame is shown in figure 3 for three representative
flame locations corresponding to σ̂ = 0.7, 0.5 and 0.3. For comparison purposes, we
also include the solution with the pressure effect turned off (i.e. mp =0). The D-L
mode develops from an initial small disturbance and quickly saturates at constant
level owing to its self-nonlinearity, leading to the formation of a cured flame. The
increased flame surface then causes sound to amplify rapidly. As sound reaches a
certain intensity, it stabilizes the D-L mode via the feedback term γb|B2|A in (5.3),
causing the flame to flatten. The sound then amplifies at a much smaller rate owing
to the pressure effect, or saturates if that effect is ignored. Note that here we have
neglected any acoustic loss. In reality, the sound level in the later stage should be
between the predictions with and without the pressure. Overall, the theoretical results
are reminiscent of the observations of Searby (1992); a more detailed comparison will
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Figure 2. Variation of coefficients with σ̂ : (a) γs and γb , (b) χs and mp , and (c) ls and ms .

be given later. The predicted stabilization of D-L instability by the relatively weak
pressure fluctuation is also consistent with the experiment of Searby & Rochwerger
(1991).

The coupling through the pressure effect on the burning rate is of secondary
importance, consistent with the conclusion of Pelce & Rochwerger (1992). For flames
anchored in the upper half of the duct, the pressure effect is minor and manifests
itself only after the flame reverts to a flat state. Relatively speaking, this effect is more
pronounced for flames anchored in the lower half of the duct.

To examine the effect of the background sound level on the solution, in figure 4, we
compare the results for three different values of B0. As B0 increases, sound reaches
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Figure 3. Nonlinear evolution of the acoustic amplitude εB and flame amplitude εA: (a) σ̂ =
0.3, (b) σ̂ = 0.5 and (c) σ̂ = 0.7. The parameter εB0 = 0.5 × 10−3. The dotted lines represent the
results for mp = 0.

a large amplitude earlier, as expected, and as a consequence flame flattening also
occurs sooner. The overall behaviour is not altered by B0. Though not shown here,
increasing A0 has a similar effect.

Figure 5 shows the evolution of the flame and sound when vortical disturbances
are present in the oncoming flow. As illustrated, these disturbances prompt sound
amplification at an earlier stage. If sufficiently strong (ε2D− � 0.01), they may prevent
the flame from saturating. The apparent resemblance between figures 4 and 5 indicates
that the effect of increasing the magnitude of the vortical disturbances is similar to
that of increasing the background sound level.
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Figure 5. Nonlinear evolution of the acoustic amplitude εB and flame amplitude εA
when the vortical disturbance amplitude ε2D− = 0, 0.001, 0.005 and 0.01. The parameter
εB0 = 0.5 × 10−3.

We now turn to the situation where the flame moves along the duct, with particular
reference to Searby’s (1992) experiments, where the flame propagates into the fresh
mixture at rest and so U− = 0. If we assume that the flame is at the exit end of the
duct at τ = 0, then xr = L/M , and the parameter σ̂ = (1 − σ ) is related to the time by
the relation

σ̂ = 1 − σ =
M

ε2L

(
τ + ε2k2

∫ τ

0

|A|2 dτ

)
. (5.6)

As a result, the frequency of the acoustic mode changes with the position and
hence with time, and so do the coefficients in (5.1)–(5.3). This time dependence is
parametric provided that ε2 � M , that is, at each location, these coefficients, as well
as the frequency of the acoustic mode, can be calculated by treating σ as a para-
meter.

We may include the effect of the slow variation by coupling the frequency and
coefficients with the amplitudes. The can be done by using σ̂ ≡ (1 − σ ), which is a
measure of the distance of the flame to the exit end, as an independent variable.
Performing the variable substitution σ̂ = Mτ/(ε2L) (which is a leading-order
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Figure 6. Spatial evolution of the acoustic amplitude εB and flame amplitude εA. The
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with mp = 0.

approximation of (5.6)) in (5.1), we obtain

dA

dσ̂
=

ε2L

M
(κA + γsA

3 − γb|B|2A + lsD
−B∗ + l∗

s D
−∗B),

dB

dσ̂
=

ε2L

M
(χsA

2B + mpB + msD
−A),

 (5.7)

where 0 � σ̂ � 1, and the coefficients γb, χs , ls , ms and mp are functions of σ̂ . The
initial conditions, A= A0 and B =B0, are imposed at σ̂ = 0.

Once A is solved from (5.7) as a function of σ̂ , we may then find the corresponding
time from

t = τ/ε2 =
L

M

∫ σ̂

0

dσ̂

1 + ε2k2A2(σ̂ )
. (5.8)

In figure 6, we show how sound and flame evolve along the duct for three different
values of B0. The main feature is the same as for anchored flames shown in figure 3.
For sufficiently small B0, sound attains significant intensity only after it reaches the
lower half of the duct. However, for increased values of B0, major sound amplification
may occur in the upper half of the duct. Therefore, the peak position of the coupling
coefficient χs (see figure 2b) does not dictate where intense sound is produced.

The theoretical results in figure 6 capture qualitatively the behaviours of flame
and sound as observed by Searby (1992). This is achieved by including the two-way
coupling between the flame and sound. To relate our theoretical prediction more
directly to Searby’s measurement, we calculate the amplitude of acoustic pressure at
the duct end. In the dimensional form, this pressure is

pe ≡
(
ρ−∞U 2

L

)
M−1 max |pa(−σL)| = 4ε|B|

(
ρ−∞U 2

L

)/
M,

where we take the density of the premixed propane ρ−∞ =1.789 kg m−3. Using the
relation (5.8), we can plot pe and the flame position against the dimensional time. The
results are shown in figure 7, while Searby’s measurement is reproduced in figure 8.
In experiments, the flame travels through the tube in about 3.5 s, compared with
4.2 s in our calculation. As the flame moves, the local characteristic frequency of the
duct slowly changes, and at the end of the abrupt jump (σ̂ = 0.58) the frequency is
about 130 Hz, which was the frequency recorded by Searby (1992). When the pressure
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effect is neglected, the theory predicts that sound saturates at about 0.004 bar, while
in experiments, sound exhibits a quasi-saturation approximately at this level. With
the pressure effect included, the theory significantly over predicts. As we commented
above, this is because our theory ignores the acoustic loss that inevitably presents.
The measured value seems to be closer to the theoretical result without the pressure
effect, suggesting that the pressure effect may just offset the acoustic lose. With due
allowance given to this fact, it may be said that the two sets of data are fairly close
even in quantitative sense. For an entirely appropriate quantitative comparison, it is
necessary to perform an analogous analysis for a tube.

Finally, figure 9 shows representative results when vortical fluctuations are present.
As for anchored flames, convected vorticity tends to cause sound amplification to
occur earlier; but moving flames appear to be less sensitive to these perturbations.
For instance, we find that the result for ε2D− = 0.001 is indistinguishable from that
for D− =0.
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Figure 9. Spatial evolution of the acoustic amplitude εB and flame amplitude εA, when the
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6. Discussion and conclusions
In this paper, the acoustic–flame coupling, the key process underlying large-scale

combustion instability, is studied by using the matched asymptotic expansion techni-
ques based on the assumptions of large activation energy and low Mach number. A
general asymptotic formulation was given for the lower-frequency regime of practical
relevance. In addition to its computational advantage, this formulation itself sheds
useful light on the nature of flame–acoustic interaction. It shows that flame wrinkling
over the acoustic time scale of the duct would definitely produce sound. On the other
hand, the acoustic field so produced acts on the hydrodynamic field of the flame.

The basic framework was then used to study the weakly nonlinear interaction
between an acoustic mode of the duct and a nearly neutral D-L instability mode.
A system of coupled amplitude equations was derived, and was found to be able to
describe the experimental observations of Searby (1992) qualitatively.

Our analysis also included the effect of vortical disturbances, which represent
weak turbulence, in the oncoming fresh mixture. It is found that certain vortical
perturbation may form a resonant triad with the acoustic and D-L modes. Such a
triadic resonant interaction stands as a new mechanism for the sound–flame coupling.

Furthermore, the present study extended the analysis of the coupling via the direct
pressure effect for a flat flame to that for a curved flame. The final coupled amplitude
equations unify all three acoustic–flame coupling mechanisms.

It would be interesting to solve the fully nonlinear system (i.e. (3.9)–(3.12) coupled
with (3.6) via (3.7) and (3.15)) numerically with a view to address whether or
not the coupling leads to self-sustained large-amplitude pressure oscillations. The
present study focused on what Searby (1992) called ‘primary instability’, where sound
eventually suppressed the wrinkled flame. For flames of relatively high equivalence
ratios, Searby (1992) observed that a second regime of instability emerged, where
acoustic pressure triggers parametric instability of the flame, which in turn produces
intense sound. The parametric instability induced by an externally imposed pressure
field was studied by Searby & Rochwerger (1991), but the two-way coupling between
the parametric instability and sound, which clearly takes place in the second regime
in Searby’s (1992) experiments, has not been investigated. We believe that numerical
solutions of the fully nonlinear system would provide a satisfactory answer to this
question.
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Our theory has been formulated specifically for the situation where the sound is
self-generated, but the problem of flames subject to finite-amplitude external acoustic
perturbation is a closely related and interesting topic. A pressure oscillation of
moderate level leads to parametric instability (Searby & Rochwerger 1991), but
interestingly at sufficiently high amplitude, it restabilizes D-L instability and may even
control the mean shape of a flame: a conic flame may transform into a hemispherical
flame as the pressure is increased (Durox et al. 1997). Further experimental studies of
Bourehla & Baillot (1998) reveal that the flame exhibits a rich variety of behaviours
depending on the amplitude and frequency of the acoustic pressure, and they mapped
out the distinct regimes in the frequency-amplitude plane. It certainly would be
interesting to develop an appropriate asymptotic theory to explain these observations
from first principles.
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The work of X.W. was carried out while he was visiting the Center of Turbulence
Research, Stanford University, in 2001 as a Senior Research Fellow. The referees
are thanked for their detailed comments and suggestions, which have led to the
improvement of the present work.

Appendix A. Details of calculations
A.1. The solution at O(ε2)

The solution for P̂ 2,a , Û 2,a and V̂ 2,a in (4.12) can be written as

P̂ 2,a = P
±
2,a exp(∓kξ ),

Û 2,a =
±kP

±
2,a

iR±ω ∓ k
exp(∓kξ ) + D± exp(−iR±ωξ ),

V̂ 2,a =
−kP

±
2,a

iR±ω ∓ k
exp(∓kξ ) − iR±ω

k
D± exp(−iR±ωξ ),


(A 1)

where the terms with coefficient proportional to D− represent the vortical fluctuations
in the oncoming fresh mixture. It follows the jump conditions (4.11) and (4.10) that

P +
2,a − P −

2,a = (R+ − R−)(GcF̂ 2,a + iωûa,1(0)AB),

kP +
2,a

iωR+ − k
+ D+ = −

kP −
2,a

iωR− + k
+ D−,

−
kP +

2,a

iωR+ − k
− iωR+

k
D+ = −

kP −
2,a

iωR− + k
− iωR−

k
D− − qkF̂ 2,a,

iωF̂ 2,a = −
kP −

2,a

iωR− + k
+ D−.


(A 2)

Solving these equations, we find

F̂ 2,a = (iω)−1 2(iωR− + k)

iω(R− + R+) + 2k
D− +

kûa,1(0)(R+ − R−)AB

iω(R− + R+) + 2k
. (A 3)

The solution for the harmonic component is given by

P̂ 2,2 = P
±
2,2 e∓2kξ +

{
2
3
P 2R+ − kP

}
h(ξ ) e−kξ −R±GcF̂ 2,2,

Û 2,2 = −P
±
2,2 e∓2kξ −

{
2
3
P 2R+ − kP

}
h(ξ ) e−kξ +C

±
2,2,

V̂ 2,2 = ±P
±
2,2 e∓2kξ +

{
1
3
P 2R+ − kP

}
h(ξ ) e−kξ .

 (A 4)
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It follows from the front equation that

P −
2,2 = 1

2
k2, (A 5)

while the jump conditions give rise to the following relations

P +
2,2 + 2

3
R+P 2 − kP = P −

2,2 + (R+ − R−)GcF̂ 2,2,

−P +
2,2 − 2

3
R+P 2 + kP + C+

2,2 = −P −
2,2 + 1

2
qk2,

P +
2,2 + 1

3
R+P 2 − kP = −P −

2,2 − 2qkF̂ 2,2,

 (A 6)

from which we obtain

F̂ 2,2 =

(
1

3

q

1 + q
− 1

q

)
k,

C+
2,2 = −

(
1

3

q2

1 + q
− 1

)
k2 + 1

2
qk2,

P +
2,2 =

{
− q2

1 + q
− q + 3

2

}
k2.


(A 7)

The solution for the mean-flow distortion is:

P̂ 2,0 = P
±
2,0 + {−2R+P 2 e−2kξ +(4R+P 2 − 2kP ) e−kξ }h(ξ ),

Û 2,0 = 2kP e−kξ h(ξ ) + C
±
2,0,

}
(A 8)

where P +
2,0 = 0, C−

2,0 = 0 in order to satisfy, respectively, the constant pressure condition
at the exit, and the zero velocity condition upstream. The jump conditions for the
mean-flow distortion gives the relations

C+
2,0 = −2kP − 2qk2 = 0, P −

2,0 = 2R+P 2 − 2kP, F̂ 0,τ = −k2A2. (A 9)

The result shows that unsteady heat release produces a mean pressure ahead of the
flame front.

A.2. The solution at O(ε3)

On substituting the leading- and second-order solutions, (4.6) and (4.12), into the
right-hand sides of (4.14)–(4.16), the solution for P̂ 3,1, Û 3,1 and V̂ 3,1 can readily be
written as follow:

P̂ 3,1 = P
±
3,1 e∓kξ ∓ 2kP

±
2,2A

3 e∓2kξ + A3
{

−R+

(
2P +

2,2 e−kξ + 2R+P 2 − 16
3
kP

)
P e−2kξ

+ R+

(
−2C+

2,2 + 1
3
R+P 2 + 2kP

)
kP ξ e−kξ

− kPk2ξ e−kξ + 4
3
R+PP +

2,2 e−2kξ
}
h(ξ ), (A 10)

Û 3,1 = −P̂ 3,1 + A3R+

{(
−2P +

2,2 e−kξ − 3
2
R+P 2 +4kP

)
P e−2kξ +(3C+

2,2 + qk2 + k2)P e−kξ

+
(

3
2
P +

2,2 e−2kξ + R+P 2 e−kξ − 4kP e−kξ
)
P

}
h(ξ )

+
{

−A′R+P (ξ + k−1 e−kξ ) − PrkP 2ξA
}
h(ξ ) + C

±
3,1, (A 11)

V̂ 3,1 = ±P
±
3,1 e∓kξ − 2kP

±
2,2A

3 e∓2kξ − A3R+

{(
R+P 2 − 8

3
kP

)
P e−2kξ − 1

3
PP +

2,2 e−2kξ

+
(

7
3
kP 2 − 2

3
R+P 3

)
e−kξ − (C+

2,2 + qk2 + k2)P e−kξ + 2kP F̂ 2,2/R+

}
h(ξ )

+ {−k−1A′R+P (1 − e−kξ ) − PrkPA}h(ξ ). (A 12)

Here, C−
3,1 = 0 so that Û 3,1 satisfies the upstream condition. Note that Û 3,1 contains

a term proportional to ξ and is therefore unbounded as ξ → ∞. In Appendix B, we
show that it eventually decays to zero in a thicker layer.
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Appendix B. Buffer layer
As is implied by (4.6), the longitudinal velocity of a nearly neutral D-L mode does

not decay to zero as ξ → ∞. We now show that it does in a thicker ‘buffer layer’
with an O(ε−2h∗) width, where the slow-time variation balances advection (and the
viscous) effect(s). The relevant variable is ξ † = ε2ξ , and the solution expands as

U0 = ε U
†
1 (eikη +c.c.) + . . . , V0 = ε3V

†
1 + . . . , P0 = ε2P

†
2 (τ ) + . . . .

Substitution into (3.9)–(3.11) yields the governing equations

R
∂ U

†
1

∂τ
+

∂ U
†
1

∂ξ † = −Prk2 U
†
1 ,

R
∂V

†
1

∂τ
+

∂V
†
1

∂ξ † = −Prk2V
†
1 ,

∂ U
†
1

∂ξ † − kV
†
1 = 0.

The solution for U
†
1 which satisfies the required matching condition

U
†
1 → −qkA(τ ) as ξ † → 0,

is found to be

U
†
1 = −qkA(τ − R+ξ †) exp(−k2Prξ †).

Though V
†
1 seems over specified, it has the solution

V
†
1 = qR+A′(τ − R+ξ †) exp(−k2Prξ †)

which is consistent with both equations. It follows that as ξ † → 0,

V
†
1 → qR+A′, U

†
1 → (−qkA) + ε2(qkR+A′ + Prk3A)ξ.

Thus, V
†
1 matches V̂ 31, while the term proportional to ξ in U

†
1 matches the analogous

term in Û 31.
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